Содержание работы или список заданий
|
Вариант №4
Задача 1. Найти у
Х -1 -0,5 0 0,5 1
Р 0,1 0,2 у 0,2 0,1
Задача 2. M(X) =4.5. Используя свойства математического ожидания, найдите M(2X+5). Задача 3. Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0,8. Найти математическое ожидание и дисперсию случайной величины Х. Найти и построить график Вероятность попадания в мишень для данного стрелка при одном выстреле равна 0,7. Составить закон распределения случайной величины Х – числа попаданий при трех выстрелах. Найти , , , . Задача 4. В урне 3 белых и 2 черных шара. Наудачу достают шары по одному без возвращения, до тех пор, пока не появится белый шар. Дискретная случайная величина Х – число испытаний, проведенных при этом. Составить таблицу распределения Х, найти , и . Задача 5. В лотерее 100 билетов. Разыгрывается 8 вещей по 5 р., 4 вещи по 10 р. и одна по 20 р. Составить закон распределения суммы выигрыша для владельца лотерейного билета. Найти , , функцию распределения. Нарисовать ее график. Задача 5. Найти математическое ожидание и дисперсию, среднее квадратическое отклонение и функцию распределения дискретной случайной величины по следующей таблице:
Х 2 3 4 5 6
Р 0,3 0,1 0,3 0,2 0,1
Вариант №4
Задача 1. Какой из этих графиков может соответствовать функции плотности распределения случайной величины, ответ обосновать
Задача 2. Задана функция распределения случайной величины Х. Требуется найти плотность распределения, математическое ожидание, среднее квадратическое отклонение. Построить графики функций плотности и функции распределения.Задача 3. Случайная величина задана плотностью распределения . Найти коэффициент С, математическое ожидание и дисперсию. Найти . Задача 4. Случайная величина Х имеет экспоненциальное распределение с параметром . Найти , и вероятность .Задача 5. Случайная величина Х имеет равномерное распределение на отрезке [-5;5]. Найти , , третий начальный момент и третий центральный момент. Задача 6. Случайная величина Х имеет нормальное распределение с параметрами Написать выражение плотности распределения, нарисовать график плотности. Найти вероятность того, что Х примет значение, принадлежащее интервалу , а также вероятность неравенства . Вариант №4
Задача 1. В лифт девятиэтажного дома на первом этаже вошли 3 человека. Каждый из них с одинаковой вероятностью выходит на любом из этажей, начиная со второго. Найти вероятности следующих событий:
А) – все пассажиры выйдут на одном этаже.
В) – все пассажиры выйдут на разных этажах.
Задача 2. Бросают два игральных кубика. Найти вероятность того, что сумма очков, выпавших на этих кубиках, не превзойдет 6. Задача 3. Каждое их двух чисел неотрицательно, но меньше 2. Найти такие два числа, сумма которых не больше 2,5, а произведение больше 4. Задача 4. В урне «а» белых шаров и «в» черных (а>2). Из урны вынимают сразу два шара. Найти вероятность того, что оба шара будут белыми? Задача 5. В урне 8 шаров: 3 белых и 5 черных. Какова вероятность того, что вынутые наугад два шара окажутся:
а) белые;
б) черные;
в) одного цвета.
Задача 6. Радист трижды вызывает корреспондента. Причем следующий вызов производится при условии, что предыдущий вызов не принят. Вероятность принятия первого вызова равна 0,3, второго – 0,4, третьего – 0,5. Найти вероятность того, что вызов будет принят.Задача 7. На карточках написаны цифры 2,3,4,5,6,7,8,9. Наудачу берут две карточки. Какова вероятность, что обе выбранные цифры нечетные.Задача 8. В ящике содержится 12 деталей завода №1, 20 деталей завода №2; 18 деталей завода №3. Вероятность того, что деталь завода №1 отличного качества, равна, 0,9; для деталей заводов №2 и №3 вероятности соответственно равны 0,6 и 0,9. Найти вероятность того, что извлеченная наудачу деталь окажется отличного качества.Задача 9. Известно, что 5% мужчин и 0,25 всех женщин дальтоники. Наудачу выбранное лицо – дальтоник. Какова вероятность того, что это мужчина? (считать, что мужчин и женщин одинаковое количество).Задача 10. Найти вероятность того, что при пяти подбрасываниях игрального кубика единица появляется хотя бы один раз.Задача 11. Вероятность появления события в каждом из независимых испытаний равна 0,2. Найти число испытаний , при котором с вероятностью 0,9876 можно ожидать, что относительная частота появления события отклоняется от его вероятности по абсолютной величине не более чем на 0,04.Задача 12. Вероятность появления события в каждом из независимых испытаний равна 0,5. Найти число испытаний , при котором с вероятностью 0,9973 можно ожидать, что относительная частота появления события отклониться от его вероятности по абсолютной величине не более, чем на 0,02. Задача 12. Определить надежность схемы, если Pi – надежность i – го элемента
|